JOANNEUM RESEARCH: Research Engineer Robotics and Sensors

JOANNEUM RESEARCH Forschungsgesellschaft mbH (JOANNEUM RESEARCH) is a business-oriented leader of innovation and a technology provider. It is linked to a worldwide network and has provided cutting-edge research according to the highest international standards for over forty years. With a focus on applied research and technology development, JOANNEUM RESEARCH plays a key role in transfer of technology and know-how. Our 2015 established ROBOTICS institute focuses primarily on innovative industrial robotics, human-robot collaboration for innovative production processes as well as on robot safety.

For our location at the Lakeside Science & Technology Park in Klagenfurt, Austria, we are seeking a highly motivated

Research Engineer
Robotics and Sensors
[PDF]

As a Research Engineer you will be actively involved in applied research and development projects. We seek for enthusiastic, proactive individuals with the following robotic-related knowledge, sensor experience and qualification:

  • University degree in the field of electrical engineering, information and communication engineering, information and computer engineering or equal
  • Relation to sensors and ideally to robotics from practise or your study/expertise
  • Experience in modelling of sensor systems, e.g., finite element method
  • Knowledge in analog and digital signal processing
  • Knowledge in hardware design
  • Programming skills in one of the following languages: C/C++, Python, Matlab/SciLab

We expect applicants to have experience in research projects and advanced knowledge of the relevant hardware and software tools according to the scope of work. Excellent spoken and written command of English is obligatory and communication skills in German would be an advantage.

This is a great opportunity to be actively involved in the set-up phase of our research institute at our location in Carinthia, Austria. We provide a specific internal competence development concept for your professional and personal career development. An attractive, team-oriented working environment with state-of-the-art infrastructure and flexible working time complete this attractive job offer at JOANNEUM RESEARCH.

This position is subject to the collective agreement for employees in non-university research and remunerated with a minimum annual gross salary of € 42.742,–. Depending on your qualifications and experience, higher remuneration is possible.

We would like to point out that any expenses incurred in connection with your application – such as travel expenses, daily allowances or overnight stays – will not be reimbursed.

We are looking forward to receiving convincing applications from committed scientist and team players via e-mail by January 6th, 2019.

JOANNEUM RESEARCH Forschungsgesellschaft mbH

ROBOTICS – Institute for Robotics and Mechatronics

www.joanneum.at/robotics

Ms. Tanja Stark

Tel: +43 316 876-2003

E-Mail: PEMBewerbungen@joanneum.at

Subject: Research Engineer ROBOTICS and Sensors

Posted in Stellenausschreibungen | Kommentare deaktiviert für JOANNEUM RESEARCH: Research Engineer Robotics and Sensors

2nd Winter Game Jam, December 14-16, 2018, Klagenfurt, Austria

The 2nd Winter Game Jam is open to everyone who likes games and wants to create, test and talk about games. Starting on Friday the topic will be revealed to all participants at the same time and random groups will brainstorm games. Then, after the ideas are pitched, team will emerge around ideas and games are to be created. Finally, on Sunday, the projects are presented to a jury and a price for the most awesome project is awarded.

Our beloved Gamebert is now on Facebook! Background stories on Gamepics and the Game Jamsare what he contributes to the general noise of the internet.

Gamebert is the figure of game related activities at Alpen-Adria Universität Klagenfurt and the mascot of the Game Jams there.

See more on youtube

Posted in Veranstaltungen | Kommentare deaktiviert für 2nd Winter Game Jam, December 14-16, 2018, Klagenfurt, Austria

A Distributed Approach for Bitrate Selection in HTTP Adaptive Streaming

Abdelhak Bentaleb | Thursday, December 13, 2018 | 14:30 | S.1.42 (formerly known as E.1.42)

Abstract: Past research has shown that concurrent HTTP adaptive streaming (HAS) players behave selfishly and the resulting competition for shared resources leads to underutilization or oversubscription of the network, presentation quality instability and unfairness among the players, all of which adversely impact the viewer experience. While coordination among the players, as opposed to all being selfish, has its merits and may alleviate some of these issues. A fully distributed architecture is still desirable in many deployments and better reflects the design spirit of HAS. In this study, we focus on and propose a distributed bitrate adaptation scheme for HAS that borrows ideas from consensus and game theory frameworks. Experimental results show that the proposed distributed approach provides significant improvements in terms of viewer experience, presentation quality stability, fairness and network utilization, without using any explicit communication between the players.

Bio: Abdelhak Bentaleb is a PhD candidate in Computer Science at School of Computing, National University of Singapore (NUS). He is advised by Prof. Roger Zimmermann and his work interest is on Video Streaming Architecture, Content Delivery, Multimedia Systems, and Computer Networks. He is a member of Media Management Research Lab and working on Streaming Media project. He designed and developed a novel suite of Adaptive Bitrate (ABR) solutions to address the key challenges of video delivery including quality instability, unfairness, and network resources under/over utilization for HTTP Adaptive Streaming (HAS) and HAS-like (DASH) systems.

Posted in TEWI-Kolloquium | Kommentare deaktiviert für A Distributed Approach for Bitrate Selection in HTTP Adaptive Streaming

Das war „30-Jahre Förderverein der Technischen Fakultät an der Universität Klagenfurt“

Am 30. November feierte der Förderverein der Technischen Fakultät an der Universität Klagenfurt sein 30. Bestandsjubiläum im Eventplateau der Raiffeisen Landesbank Kärnten (siehe Einladung & Programm).

Begrüßung durch Daniel Kirchmeier (Raiffeisen). (c) ftf/Christina Supanz

Vorstandsmitglied Arnold Wurzer präsentierte einen interessanten Rückblick:

(c) ftf/Christina Supanz

Die TEWI-Best-Performer wurden von Clemens Heuberger geehrt und die Gewinner des Roland-Mittermeir-Preises wurden durch Hugo Auernig ausgezeichnet.

Preisträger 2018. (c) ftf/Christina Supanz

TEWI-Best-Performer:

  • Kathrin Spendier, Technische Mathematik
  • Stefan Haan, Angewandte Informatik
  • Philip Steinkellner, Informationsmanagement
  • Stefan Mikl, Informationstechnik / ICE
  • Carina Monika Spreitzer, Lehramt UF Mathematik
  • Sebastian Schönfelder, Lehramt UF Informatik

Roland-Mittermeir-Preisträger:

Im Anschluß gab es eine spannende Podiumsdiskussion zum Thema 5G Kommunikation der Zukunft – Chancen und Risiken mit Thomas Stockhammer, Aneta Baier, Driton Emini, Frank Fitzek, und Wolfgang Rauter. Moderiert wurde die Podiumsdiskussion von Christian Bettstetter und Hermann Hellwagner.

(c) ftf/Christina Supanz

An diesem Tag gab es auch noch zwei interessante TEWI-Kolloquien an der Alpen-Adria-Universität Klagenfurt. Die Folien sind hier zu finden: (i) Tactile Internet with Human-in-the-Loop von Frank Fitzek und (ii) New Media Services from a Mobile Chipset Vendor and Standardization Perspective von Thomas Stockhammer.

Posted in Veranstaltungen | Kommentare deaktiviert für Das war „30-Jahre Förderverein der Technischen Fakultät an der Universität Klagenfurt“

Bandwidth Efficient Streaming of Omnidirectional Video

(c) ftf/Christina Supanz

… ist der Titel des 1. Platzes des Roland-Mittermeir-Preises 2017 und wurde vom Förderverein Technische Fakultät mit EUR 1.500,–ausgezeichnet. Dem Autor und Preisträger, Herrn Dipl.-Ing. Mario Graf, wurde der Preis im Rahmen 30-Jahr-Feier Förderverein Technische Fakultät übergeben und die Arbeit wird hier kurz vorgestellt:

Zusammenfassung: In dieser Masterarbeit werden Strategien und Lösungen zum bandbreitenoptimierten Streaming von omnidirektionalen Videoinhalten (ODV) behandelt. Omnidirektionale Videos bieten die Möglichkeit, während des Betrachtens die aktuelle Blickrichtung interaktiv zu ändern. Durch diese spezielle Eigenschaft benötigen solche Videos jedoch auch höhere Bitraten und Auflösungen als traditionelle Videoinhalte. Dadurch entsteht ein Bedarf nach neuen Streaming Strategien, um diesen erhöhten Anforderungen an die Datenübertragung gerecht werden zu können.

Unter Streaming versteht man in diesem Kontext das Übertragen von Videoinhalten über das Internet. Diese Inhalte können dann etwa in einem Webbrowser oder auf einem Smartphone betrachtet werden, ohne dass der Inhalt auf dem Gerät gespeichert werden muss. Dabei wird das Video in kleinen Datenpaketen heruntergeladen, welche temporär am Gerät verfügbar sind und dann wieder verworfen werden.

Zu Beginn liefert diese Arbeit ausführliche Hintergrundinformationen dazu, wie ODV Inhalte erstellt, gespeichert und gestreamt werden können. Außerdem werden mehrere neue Streaming Strategien vorgestellt, unter anderem auch Tiled-Streaming. Dabei wird das Video in rechteckige Bereiche aufgeteilt, die getrennt voneinander und in verschiedenen Bildqualitäten zum wiedergebenden Gerät (Client) übertragen werden können. Der Client kann nun die Datenrate der Übertragung dadurch vermindern, dass etwa zurzeit nicht sichtbare Bildausschnitte nur in geringer Bildqualität übertragen werden.

Um diesen Ansatz zu evaluieren, wurde ein Datenset bestehend aus einer Vielzahl an Videosequenzen erstellt, die unterschiedliche Eigenschaften aufweisen. Um zu überprüfen, wie sich Tiled-Streaming in einem Idealszenario verhält, wurde dessen Effizienz mit einer statischen vordefinierten Blickrichtung evaluiert. Es hat sich gezeigt, dass unter Verwendung eines geeigneten Tiling-Schemas, die benötigte Bandbreite um bis zu 65% reduziert werden kann. In einer Netzwerkumgebung mit besonders niedrigen Latenzzeiten können sogar Einsparungen bis zu 85% erreicht werden.

In einem Szenario mit sich ständig verändernden Blickrichtungen, so wie es beim Betrachten solch eines Inhalts durch eine Person der Fall wäre, konnte eine mögliche durchschnittliche Bandbreiteneinsparung von 40% festgestellt werden. Bei Inhalten mit höheren Bitraten und Auflösungen erhöht sich dieser Wert auf bis zu 55%. Abschließend hat sich für das Tiled-Streaming von ODV im Equirectangular-Layout, ein Tiling Schema von 6×4 Tiles als geeignet herausgestellt.

Posted in News | Kommentare deaktiviert für Bandwidth Efficient Streaming of Omnidirectional Video

Low-Complexity, Parametric System Identification and Controller Auto-Tuning for Switched Mode Power Converters

(c) ftf/Christina Supanz

… ist der Titel des 2. Platzes des Roland-Mittermeir-Preises 2017 und wurde vom Förderverein Technische Fakultät mit EUR 1.000,–ausgezeichnet. Dem Autor und Preisträger, Herrn Dipl.-Ing. Harald Gietler, wurde der Preis im Rahmen 30-Jahr-Feier Förderverein Technische Fakultät übergeben und die Arbeit wird hier kurz vorgestellt:

Zusammenfassung: The ever-increasing number of electronic devices pushes the demand on efficient power management solutions continuously. Over the past decades the market share of switched mode power converters (SMPCs) grew rapidly due to their superior efficiency compared to conventional regulators. Nevertheless, an insufficiently performing SMPC influences the operating range, the stability and the efficiency of the supplied system. To optimize the transient performance of an SMPC, the use of suitable control algorithms is crucial. The performance of those control schemes is limited by insufficient knowledge of the converter characteristics. Unfortunately, exact information about the system is usually not available, due to manufacturing tolerances and long- term aging effects of involved passive components. Furthermore, the whole set of passive components may be changed to achieve different characteristic behaviors. The controller has to be robust, and consequently conservatively tuned, to cover all configuration possibilities.

Online system identification (SI) methods can be used to identify system parameters. The estimated characteristics are used as a basis for progressive tuning of the controller in order to improve the transient performance of the closed loop system. Generally, the more accurate the estimation result of the system parameters is, the better is the performance gain due to the SI process. This work introduces a novel concept for fast, efficient and accurate coefficient estimation of discrete-time models such as transfer functions. It approximates the linear least squares method and compared to well established algorithms it drastically reduces the computational complexity, while maintaining sufficient accuracy. Generally, this methodology can be applied to common discrete-time transfer functions or state-space models, whereas this thesis focuses on its impact and applicability in the field of SMPCs. Therefore, the proposed method is especially beneficial, since it significantly reduces the required excitation time compared to the state-of-the-art. Consequently, the proposed concept can be integrated into the start-up procedure of the converter module. The theoretical background of the introduced concept has been experimentally verified with a dc-dc buck converter based prototyping platform. It includes a digital proportional-integral-derivative (PID) controller implemented in a field-programmable- gate-array (FPGA), which is adaptively tuned, resulting in significant improvements in terms of dynamic performance.

The master thesis was done in cooperation with Infineon Technologies Austria AG. Two scientific papers based on the thesis have been published at major international conferences and one in a national journal. Additionally, one contribution for an international journal has been submitted and two US-Patent applications have been filed.

International Conference Publications:

H. Gietler, C. Unterrieder, A. Berger, R. Priewasser and M. Lunglmayr, „Low-complexity, high frequency parametric system identification method for switched-mode power converters,“ 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, 2017, pp. 2004-2009. doi: 10.1109/APEC.2017.7930974

M. Kanzian, H. Gietler, C. Unterrieder, M. Agostinelli, R. Priewasser, M. Lunglmayr and M. Huemer, “Low-Complexity State- Space Based System Identification and Controller Auto-Tuning Method for Multi-Phase DC-DC Converters,” in Proc. of 2018 International Power Electronics Conference (IPEC), Nigaata, Japan

Journal Published:

Kanzian, Marc & Gietler, Harald & Agostinelli, Matteo & Priewasser, Robert & Huemer, Mario. (2018). Comparative study of digital control schemes for interleaved multi-phase buck converters. e & i Elektrotechnik und Informationstechnik. 10.1007/s00502-017-0574-3.

Journal Submitted:

H. Gietler, M. Kanzian, C. Unterrieder, A. Berger, R. Priewasser, M. Huemer and H. Zangl, „ Low-Complexity Natural Frequency Estimation and Adaptive Control for Buck Converters “, IEEE Transaction on Power Electronics

US-Patent Applications:

CONTROLLER TUNING USING DUTY CYCLE MISMATCH 2017P51442 US (1186-366US01) CONTROLLER TUNING USING PERTURBATION SEQUENCE 2017P51445 US (1186-367US01)

Posted in News | Kommentare deaktiviert für Low-Complexity, Parametric System Identification and Controller Auto-Tuning for Switched Mode Power Converters

Hyperspectral Deep Learning for Fruit and Vegetable Recognition and Bayesian Deep Learning to Accurately Determine Model Uncertainty

(c) ftf/Christina Supanz

… ist der Titel des 3. Platzes des Roland-Mittermeir-Preises 2017 und wurde vom Förderverein Technische Fakultät mit EUR 500,–ausgezeichnet. Dem Autor und Preisträger, Herrn Dipl.-Ing. Konstantin Posch, wurde der Preis im Rahmen 30-Jahr-Feier Förderverein Technische Fakultät übergeben und die Arbeit wird hier kurz vorgestellt:

Zusammenfassung: Theoretisches Fundament der vorliegenden Arbeit sind neurale Netze, insbesondere Convolutional Neural Networks (CNNs), als spezifische Deep Learning Modelle (DLM) zur Bildklassifikation. Zielsetzung war einerseits die Entwicklung eines innovativen, statistischen Bildklassifikators für Obst und Gemüse und andererseits die Erarbeitung einer neuen Methode zur Verknüpfung von Bayesscher Statistik und Deep Learning, mit dem Ziel, aktuelle Schwachstellen von DLMs entgegenzuwirken und demzufolge deren Anwendungsgebiet und Akzeptanz zu vergrößern. Neben Bearbeitung der beiden Kernthemen wurden vorab jeweils die theoretischen Hintergründe anschaulich beschrieben.

In der Nahrungs- und Genussmittelindustrie ist die zuverlässige Klassifikation von Obst und Gemüse von großem Interesse (automatisierte Sortiersysteme, Qualitätskontrolle, personalisierte Ernährung, automatische Bepreisung,…). Aufgrund der teilweise beträchtlichen Ähnlichkeiten der einzelnen Klassen in Form und Farbe sowie der oft deutlichen Varianz innerhalb der Klassen gilt die Problemstellung als schwierig. Modelle sind häufig nicht präzise genug, oder erfordern Bedingungen an die Datenaufnahme, die in realen Anwendungen unrealistisch, bzw. nur bedingt erfüllbar sind. Im Zuge dieser Arbeit wurde analysiert, ob die Aufnahme von hyperspektralen Bildern (im sichtbaren Spektrum) das Training zuverlässigerer Modelle erlaubt. Beschränkung auf das sichtbare Spektrum erlaubt die Verwendung von vergleichsweise günstigen Kameras, welches weitläufige Akzeptanz in praktischen Anwendungen garantieren soll. Insbesondere wurde eine neue Methode zur Klassifikation von hyperspektralen Bilddaten vorgeschlagen, welche im Wesentlichen auf einer geschickten Erweiterung von CNNs für RGB Daten beruht. Basierend auf einem selbstaufgenommenen und für praktische Anwendungen realistischen Datensatz konnten state-of-the-art Resultate erzielt werden. Darüber hinaus bestätigte eine Konversion der hyperspektralen Bilder in RGB Bilder die Vermutung, dass „Hyperspectral Imaging“ das Training signifikant zuverlässigerer Modelle erlaubt.

Grundsätzlich besitzt Deep Learning zwei Nachteile, welche beide auf der Tatsache beruhen, dass die lernbaren Netzwerkparameter als deterministisch betrachtet werden. Einerseits kann die Prognoseunsicherheit nicht gemessen werden und andererseits leiden die Modelle häufig unter einem over-fitting. Insbesondere die fehlende Information an Prognoseunsicherheit resultiert in bedingter Eignung von Deep Learning in einigen Anwendungsgebieten, in welchen Fehlentscheidungen besonders schwerwiegend sind (selbstfahrende Autos, Medizin,…). Beide Probleme lassen sich mittels Bayesscher Statistik lösen. Hierbei werden die Netzwerkparameter wie Zufallsvariablen behandelt, welches eine Robustheit gegen over-fitting garantiert und weiters eine Quantifizierung der Unsicherheit erlaubt. Sogenanntes Bayes Deep Learning ist Gegenstand aktueller Forschung und stößt weltweit auf enormes Interesse. In dieser Arbeit wird erstmals eine Methode für Bayes Deep Learning präsentiert, welche sowohl eine akkurate Quantifizierung der Prognoseunsicherheiten, als auch der Parameterunsicherheiten erlaubt. Wie in der Arbeit gezeigt wurde, kann letzteres zur Optimierung von Netzwerkarchitekturen genutzt werden. Die vorgeschlagene Methode wurde durch Modifikation des populären Deep Learning Frameworks Caffe implementiert und erfolgreich am Benchmark-Datensatz MNIST getestet.

Die vorliegende Diplomarbeit diente als Ausgangspunkt von zwei Publikationen, welche sich derzeit in Elsevier Engineering Applications of Artificial Intelligence und Springer International Journal of Computer Vision im Reviewprozess befinden. Abschließend ist noch anzumerken, dass die Arbeit im Rahmen eines Projektes mit der Carinthian Tech Research AG, Villach entstand und darüber hinaus von der Philips Austria GmbH unterstützt wurde.

Posted in News | Kommentare deaktiviert für Hyperspectral Deep Learning for Fruit and Vegetable Recognition and Bayesian Deep Learning to Accurately Determine Model Uncertainty

Review: New Media Services from a Mobile Chipset Vendor and Standardization Perspective [Slides]

The review of the TEWI colloquium of Dr. Thomas Stockhammer from November 30, 2018 comprises the slides (below):

Abstract: The media landscape changes significantly over the last few years by new content formats, new service offerings, additional consumption devices and new monetization models. Think of Netflix, DAZN, Mediatheks, mobile devices, interactive content, smart TVs, Virtual and Augmented Reality, and so on. Many of these efforts have been realized by a limited usage of standards, but are standards irrelevant? Secondly, more and more services are enabled by latest mobile compute platforms enabling new services and experiences. This presentation will provide an overview some of these trends and will motivate the development of global interop standards. Specific aspects will include the move of linear TV services to the Internet (both mobile and fixed) as well recent advances on Extended Reality and immersive media trends.

Bio: Thomas Stockhammer received the Dipl.-Ing. and Dr.-Ing. degrees from the Munich University of Technology, Munich, Germany. Thomas was Visiting Researcher at Rensselear Politechnical Institute (RPI), Troy, NY, USA and University of California San Diego (UCSD), San Diego, CA, USA. After acting as cofounder and CEO of Novel Mobile Radio (NoMoR) Research for 10 years and a consultant for Siemens mobile, BenQ mobile, LG Electronics and Digital Fountain, he joined Qualcomm in 2014 as Director Technical Standards. In his different roles, he co-authored more than 200 research publications and more than 150 patents and 1000s of contributions to standardization efforts. In his day job, he is the active and has leadership and rapporteur positions in 3GPP, DVB, MPEG, IETF, ATSC, CTA, ETSI, VR Industry Forum and the DASH-Industry Forum in the area of multimedia communication, TV-distribution, content delivery protocols, immersive media representation and adaptive streaming. Among others, he leads the MPEG-I efforts in MPEG, he is the chair of the DASH-IF Technical working group, the rapporteur of the first completed 3GPP VR work as well as the chairman of the DVB CM-I group. Thomas also received the INCITS Technical Excellence Award 2013 for his MPEG DASH work and the 3GPP Excellence Ward 2017 for his work on Enhanced TV.

Posted in TEWI-Kolloquium | Kommentare deaktiviert für Review: New Media Services from a Mobile Chipset Vendor and Standardization Perspective [Slides]

Review: Tactile Internet with Human-in-the-Loop [Slides]

The review of the TEWI colloquium of Prof. Dr.-Ing. Dr. h.c. Frank H. P. Fitzek from November 30, 2018 comprises the slides (below):

Bio: Frank H. P. Fitzek is a Professor and head of the “Deutsche Telekom Chair of Communication Networks” at TU Dresden coordinating the 5G Lab Germany. He is the spokesman of the DFG Cluster of Excellence CeTI.

He received his diploma (Dipl.-Ing.) degree in electrical engineering from the University of Technology – Rheinisch-Westfälische Technische Hochschule (RWTH) – Aachen, Germany, in 1997 and his Ph.D. (Dr.-Ing.) in Electrical Engineering from the Technical University Berlin, Germany in 2002 and became Adjunct Professor at the University of Ferrara, Italy in the same year. In 2003 he joined Aalborg University as Associate Professor and later became Professor.

He co-founded several start-up companies starting with acticom GmbH in Berlin in 1999. He has visited various research institutes including Massachusetts Institute of Technology (MIT), VTT, and Arizona State University. In 2005 he won the YRP award for the work on MIMO MDC and received the Young Elite Researcher Award of Denmark. He was selected to receive the NOKIA Champion Award several times in a row from 2007 to 2011. In 2008 he was awarded the Nokia Achievement Award for his work on cooperative networks. In 2011 he received the SAPERE AUDE research grant from the Danish government and in 2012 he received the Vodafone Innovation prize. In 2015 he was awarded the honorary degree “Doctor Honoris Causa” from Budapest University of Technology and Economy (BUTE).

His current research interests are in the areas of wireless and 5G communication networks, network coding, cloud computing, compressed sensing, cross layer as well as energy efficient protocol design and cooperative networking.

Posted in TEWI-Kolloquium | Kommentare deaktiviert für Review: Tactile Internet with Human-in-the-Loop [Slides]

Flextronics International Gesellschaft m.b.H. neues Mitglied beim Förderverein Technische Fakultät

Flex Althofen ist Teil eines internationalen Technologieunternehmens, das weltweit mehr als 200.000 Mitarbeiter in über 30 Ländern beschäftigt.

Am Standort Althofen entwickeln über 850 Mitarbeiter intelligente Produkte für eine vernetzte Welt. Doch was kann man sich darunter vorstellen? Sei es der kleinste Lautsprecher der Welt oder ein hochmodernes Insulingerät bis hin zu tonnenschweren Maschinen, Flex produziert alles. Am Kärntner Standort hat man sich auf elektronische Module und Komplettgeräte für hochkarätige, internationale Kunden aus der Medizintechnik, Automobilindustrie und Industrietechnik spezialisiert. Der Fokus sowohl in der Produktion als auch in der Forschung liegt insbesondere in Robotertechnologien, Automatisierungstechnik, Industrie 4.0 und IoT (Internet of Things).

Einer der besten Arbeitgeber Österreichs – Flex Althofen wurde 2018 mit dem „Great Place to Work“ Award ausgezeichnet. Warum? Weil, bei Flex Althofen die Mitarbeiter den Unterschied machen. Neben einer Kantine, einem Betriebsrestaurant, bietet Flex einen wöchentlichen Massagedienst im Haus, jährliche gemeinsame Feste sowie die Chance in einem internationalem Unternehmen eine Karriere zu starten.

Posted in News | Kommentare deaktiviert für Flextronics International Gesellschaft m.b.H. neues Mitglied beim Förderverein Technische Fakultät
RSS
EMAIL